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Chaotic versus random ionization
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We use Kepler maps to study the classical ionization of the hydrogen atom driven by electric fields; we
compare the ionization rate~IR! due to chaotic motion~constant field amplitude! with the IR due to random-
ness~random field amplitude!. We find that for weak fields the ionization due to random amplitude is more
effective, while for strong fields the ionization due to chaos is more effective; so, there is a cross of such
ionization curves. A physical explanation of this phenomenon, based on the trajectory behavior, is given.
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It is known that generally a random component in t
driven force destabilizes physical systems@1–4#. Another
source of destabilization can be the chaotic behavior in t
dependent systems@5–8#. Recall that the chaotic behavio
has been described as a kind of instability generated by
terministic dynamics, so randomness and chaoticity are
pected to be somehow related. In fact, the principles of
godic theory do not distinguish both kinds of systems,
main point being the presence of invariant measures w
respect to the dynamics; as an important example cons
Oseledec’s multiplicative ergodic theorem@9–11# ~and its
variations! invoked to rigorously define Lyapunov exponen
for both random and chaotic systems. In some calculati
random variables have successfully mimicked chaotic or
@12,13#.

Usually the Hamiltonian chaotic dynamics resemble r
dom walks in phase space, but with the presence of stab
islands. In this Brief Report we address a very simple a
interesting question: randomness or chaoticity is more ef
tive in destabilizing a physical system? Certainly the ans
should depend on many different variables, so we need t
very definite on our choices of the system and underly
conditions. We choose a classical driven atomic system
that ~i! we can clearly monitor the destabilization throu
atomic ionization, which, in principle, could be tested in e
periments;~ii ! it is possible to reduce the relevant dynam
to maps, speeding up considerably the numerical calc
tions; ~iii ! the original classical system presents chaos
suitable intensities of the driven force;~iv! it’s very easy to
introduce some randomness in the force intensity; and,~v!
finally, we get an immediate comparison between both k
of motion via the potential intensity.

Some comments are in order. Item~ii ! needs some justi
fication, so some specific numerical calculations, without
map approximation, were performed on our system~see be-
low!. In the case of random force~iv! one needs to be sur
the main contribution for ionization is due to the randomn
itself; we shall check this by numerically computing a diff
sion constant as function of the force intensity. Now we d
cuss our system and also detail how we have controlled
points just mentioned.

The one-dimensional~1D! hydrogen atom under intens
periodic electric field is an important chaotic physical sy
tem; it is amenable to experiments@14# and its theoretical
study @5,15–21# can be reduced to the Kepler map@17,18#,
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which cleverly reduces the dynamics to the perihelium. A
though it is a great simplification over the full Hamiltonia
it has provided a good description of the whole system. T
Hamiltonian of this system under a monochromatic fie
with amplitudee and frequencyv is

H~x,t !5~1/2!px
221/uxu1ex sin~vt !, ~1!

and the corresponding~usual! Kepler map@17,18#,

Nk115Nk10.822pev25/3sin~fk!,
~2!

fk115fk12pv~22vNk11!23/2,

whereN is the classical equivalent of the number of absorb
photons andf is the phase of the electric field at the perih
lium of the electron orbit (k counts the number of times th
electron reaches the perihelium!. We shall also denote byn
the classical quantity equivalent to the principal quant
number.

We introduce the randomness in Eq.~1! by taking e

5e(t) assuming randomly6 ē, and each value being con
stant during a Kepler period, i.e., it does not change in
time interval Dt52p/vK (vK denotes the Kepler fre
quency!. In this way the only modification of Eq.~2! is the
consideration of e56 ē according to a random
sequence—we tooke equally distributed between these tw
values—and we shall call it random Kepler map.

The use of the Kepler period in randomly changing fie
intensity is pragmatical. First, the usual Kepler map itself
derived taking into account that the main contribution of t
electric field occurs at the perihelium, so that it evolves
system for a Kepler period. Then our random choice is qu
natural. Second, such choice simplifies enormously the
merical calculations. We have checked, for some param
values, that the Kepler map~2! actually reproduces the gen
eral behavior of the solutions obtained from direct integ
tion of the Hamiltonian equations derived from Eq.~1!, as
discussed later on.

It is well known that systems~1! and ~2!, with suitable
constante51 ē ~or e52 ē), give rise to chaotic motion and
ionization @18,8#. Our random modification also generat
ionization. Therefore, we use both Kepler maps to calcu
©2001 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW E 63 047202
the ionization rate~IR! as a function of the scaled field am
plitude e05 ēn4, and then compare the random and chao
ionizations.

We have found that the IR for low field intensity, with th
random sequence to shape its amplitude, is larger than
generated by the usual Kepler map~constant sequence!; see
Fig. 1. This is expected since the usual Kepler map prese
many stability islands for low field intensity, and most tr
jectories are restricted to Kolmogorov-Arnold-Maser~KAM !
tori. The random case breaks all stability islands for a
nonzero value of the field amplitudeē, and eventually many
trajectories escape.

The result is reversed for the IR under high field intens
i.e., in this case the ionization is more effective for the ch
otic Kepler map with constant amplitude sequences than
the corresponding map with random sequences; see Fi
We checked that this occurs because in the random
there are no stability islands that prevent the decreasin
the quasienergy (E05vNn2) indefinitely. The decreasing o
the quasienergy in the random case is connected to the
creasing of the radiir 5uxu of some electron trajectories. Th
approximation of the electron to the nucleus is a kind
classical localization in the random case, which is absen
the usual Kepler map. In fact, as it is well known, even
high intensity fields the usual Kepler map preserves so
stability islands andE05vNn2 cannot decrease indefinitely
However, the phase space is virtually homogeneous for
random case, i.e., the trajectories are dense in phase sp

In the regime of the high field intensity we have foun
that the system is strongly perturbed and each trajec
evolves into one of two possible asymptotical limits~except,
of course, the trajectories restricted to the preserved tori!: the
limit r→` ~ionization! or the limit r→0. If there are no
stability islands, the two limits are possible; if there are
lands near the origin only the limitr→` is possible for the

FIG. 1. Ionization rate~whose maximum is one! as a function of
the scaled field amplitudee05 ēn4 in atomic units~a.u.! for fixed
scaled frequencyv05vn353.0 a.u. The curves~KC!, ~KF!, and
~KR! are obtained by iteration of the Kepler maps with the consta
Fibonacci and random field amplitude sequences, respectivel
was used 13104 initial conditions for each value ofe0.
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trajectories of the Kepler map. In the random case the tra
tories are distributed between both limits, while for the us
Kepler map~with weak or intense field! only the r→` is
possible; this is the mechanism responsible for the cros
of the IR curves, also justifying why for intense fields th
Kepler map with constant sequence presents largerIR than
the random case~see Fig. 1!.

For some parameter values we have also calculated th
by integration of the differential equations from the classi
Hamiltonian~1!, and then compared such results with tho
obtained with the Kepler maps~see Fig. 2!. Our intention
was to check whether the found ionization crossings, ill
trated in Fig. 1, were an artifact of the Kepler map appro
mations. We have considered the Hamiltonian with const
field amplitude and also with its sign randomly changing
the perihelium. For both cases the Hamiltonian and Kep
map present similar island structures in phase space; als
values of IR are comparable in each case, so that the o
inversion of the IR curves as function of the field intensity
also present for the Hamiltonian equations. For the rand
Hamiltonian we have checked that similar results are
tained even though the sign of the field changes more
quently along the electron trajectory, i.e., near the periheli
and also in other positions of its trajectory. Such results c
roborate the use of above Kepler map approximation for r
dom fields. We are thus justified in using Kepler maps in
simulations@see~ii ! at the begining of this work#. Notice,
however, that the effects are more pronounced in the ca
lations based on the Kepler maps~see Fig. 2!. One reason for
such quantitative difference is that the Kepler map with co
stant sequence is in good agreement with the Hamilton
while for nonconstant sequences such agreement is no
good; perhaps for continuous models the phase space is
structure breaks hardly by sequence perturbations in c
parison to the respective discrete maps.

We have calculated the averages^N2& and^n2& ~over ini-

t,
It

FIG. 2. Ionization rate~whose maximum is one! as functions of
the scaled field amplitude in a.u. forv053.0 a.u. The curves were
obtained with the constant sequence for the Kepler map~solid! and
the Hamiltonian equations~dotted!, and also with the random se
quence for the Kepler map~dashed! and the Hamiltonian~dot
dashed!. It was used 13103 initial conditions for the Hamiltonian
equations and 13104 for the Kepler maps.
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BRIEF REPORTS PHYSICAL REVIEW E 63 047202
tial conditions! as functions of time for both the usual an
random Kepler maps. In the case of the usual Kepler map
simple law was found for the time dependence of^N2&, even
for large values ofē; recall that for small values ofē the
Kepler map is nearly integrable. On the other hand,^N2& for
the random Kepler map is diffusive for all values in th
range of amplitudes we have considered~i.e., 231024<ē

<0.2),^N2&(t)'D( ē)t, and the dependence of the diffusio
constant with the amplitude of the field beingD( ē);ēd,
with d52.14 fitting very well in such range of amplitude
This strongly indicates that the random component is ind
the main ingredient responsible for the ionization in the r
dom Kepler map for any nonzeroē value. We have also
found that, discarding the trajectories as soon as they
ionized,^n2& decreases monotonically; since^n2& is propor-
tional to the radius of the electron orbit, we have a quant
tive evidence that, in the case of random Kepler map,
trajectories that do not ionize penetrate into the atom~i.e.,
r→0), while for the usual Kepler map this phenomenon
forbidden due to the presence of stability islands in ph
space.

We have also considered an almost periodic driving, w
the sign of the field intensity6 ē in the Kepler map follow-
ing the Fibonacci@22,23# sequence, which is obtained from
the replacement rules
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1→12 and 2→1;

beginning with ‘‘1’’ one uses the above rules in concaten
tion to get

1211212112112•••

In the Fibonacci case we have, in fact, got intermedi
values of the IR between the other two cases we h
analyzed—see Fig. 1. Notice the inversion of the IR effe
tiveness with respect to the other two cases.

To conclude we try to put our results in a more gene
perspective, although based on just one physical system.
have found that for small perturbation intensity the chao
behavior fills a small part of phase space and the desta
zation is less effective than the random one. There is a cr
over and for large perturbation the random destabilizat
becomes less effective than the chaotic one. Intermed
behavior is possible, as we have found by using an alm
periodic driven case.
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