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Chaotic versus random ionization
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We use Kepler maps to study the classical ionization of the hydrogen atom driven by electric fields; we
compare the ionization rai@R) due to chaotic motiorficonstant field amplitudewith the IR due to random-
ness(random field amplitude We find that for weak fields the ionization due to random amplitude is more
effective, while for strong fields the ionization due to chaos is more effective; so, there is a cross of such
ionization curves. A physical explanation of this phenomenon, based on the trajectory behavior, is given.
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It is known that generally a random component in thewhich cleverly reduces the dynamics to the perihelium. Al-
driven force destabilizes physical systeffiis-4]. Another  though it is a great simplification over the full Hamiltonian,
source of destabilization can be the chaotic behavior in timét has provided a good description of the whole system. The
dependent systeni$—8]. Recall that the chaotic behavior Hamiltonian of this system under a monochromatic field
has been described as a kind of instability generated by dévith amplitudee and frequency is
terministic dynamics, so randomness and chaoticity are ex-
pected to be somehow related. In fact, the principles of er- H(x,t)=(1/2)p2— 1/|x| + ex sin( wt), (N)
godic theory do not distinguish both kinds of systems, the
main point being the presence of invariant measures with 4 the correspondin@isua) Kepler map[17,18,
respect to the dynamics; as an important example consider
Oseledec’s multiplicative ergodic theore@—11] (and its _5/3
variations invoked to rigorously define Lyapunov exponents Nics 1= Nic0.822r €0 *sin( ),
for both random and chaotic systems. In some calculations 2
random variables have successfully mimicked chaotic orbits Gri1= P+ 27mo(— 20N, ) 2
[12,13.

Usually the Hamiltonian chaotic dynamics resemble ranyypereN s the classical equivalent of the number of absorbed
dom walks in phase space, but with the presence of stabilityhotons andp is the phase of the electric field at the perihe-
islands. In this Brief Report we address a very simple angi,m of the electron orbitK counts the number of times the

interesting question: randomness or chaoticity is more effecz|actron reaches the periheliinwe shall also denote by
tive in destabilizing a physical system? Certainly the answefne classical quantity equivalent to the principal quantum
should depend on many different variables, so we need to mber.

very definite on our choices of the system and underlying \ye introduce the randomness in Ed) by taking e
conditions. We choose a classical driven atomic system so . — :
that (i) we can clearly monitor the destabilization through = (1) assuming randomlyt & 'and.each value being con-
atomic ionization, which, in principle, could be tested in ex—Stant during a Kepler period, i.e., it does not change in the

perimentssii) it is possible to reduce the relevant dynamics'™e interval At=27/w¢ (wy denotes the Kepler fre-
to maps, speeding up considerably the numerical calculaquen_cy' In_ this way the only m0d|f|gat|on of Eq2) is the
tions; (i) the original classical system presents chaos fofonsideration of e=*e according to a random
suitable intensities of the driven forc@y) it's very easy to ~ Seéquence—we took equally distributed between these two
introduce some randomness in the force intensity; &nd, Vvalues—and we shall call it random Kepler map.

finally, we get an immediate comparison between both kind The use of the Kepler period in randomly changing field
of motion via the potential intensity. intensity is pragmatical. First, the usual Kepler map itself is

Some comments are in order. Iteii) needs some justi- derived taking into account that the main contribution of the
fication, so some specific numerical calculations, without thelectric field occurs at the perihelium, so that it evolves the
map approximation, were performed on our systeee be- System for a Kepler period. Then our random choice is quite
low). In the case of random fordév) one needs to be sure natural. Second, such choice simplifies enormously the nu-
the main contribution for ionization is due to the randomnesgnerical calculations. We have checked, for some parameter
itself; we shall check this by numerically computing a diffu- Values, that the Kepler ma() actually reproduces the gen-
sion constant as function of the force intensity. Now we dis-eral behavior of the solutions obtained from direct integra-
cuss our system and also detail how we have controlled thion of the Hamiltonian equations derived from EH@), as
points just mentioned. discussed later on. o

The one-dimensionallD) hydrogen atom under intense It is well known that systemsl) and (2), with suitable
periodic electric field is an important chaotic physical sys-constant=+ e (or e= —€), give rise to chaotic motion and
tem; it is amenable to experiment$4] and its theoretical ionization [18,8]. Our random modification also generates
study[5,15—-21] can be reduced to the Kepler mpp7,18, ionization. Therefore, we use both Kepler maps to calculate
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FIG. 1. lonization ratéwhose maximum is ones a function of FIG. 2. lonization ratéwhose maximum is oneas functions of

the scaled field amplitude,=¢n in atomic units(a.u) for fixed  the scaled field amplitude in a.u. fal=3.0 a.u. The curves were
scaled frequencyw,=wn®=3.0 a.u. The curve$KC), (KF), and obtained with the constant sequence for the Kepler (safid) and
(KR) are obtained by iteration of the Kepler maps with the constantthe Hamiltonian equationgdotted, and also with the random se-

Fibonacci and random field amplitude sequences, respectively. fuénce for the Kepler magdashed and the Hamiltonian(dot
was used X 10 initial conditions for each value of;. dashedl It was used X 10° initial conditions for the Hamiltonian

equations and % 10* for the Kepler maps.

the ionization rateIR) as a function of the scaled field am- trajectories of the Kepler map. In the random case the trajec-
plitude e,=en?, and then compare the random and chaotidories are distributed between both limits, while for the usual
ionizatio(r)ls ’ Kepler map(with weak or intense fieldonly ther—« is

We have found that the IR for low field intensity, with the possible; this is the mechanism responsible for the crossing

. . : the IR curves, also justifying why for intense fields the
random sequence to shape its amplitude, is larger than th o h
generated by the usual Kepler m@mnstant sequengesee epler map with constant sequence presents laryehan

) . ) the random casésee Fig. L
Fig. 1. This is expected since the us.ual Ke_pler map Preseves cqr some parameter values we have also calculated the IR
many stability islands for low field intensity, and most tra-

) i _ by integration of the differential equations from the classical
jectories are restricted to Kolmogorov-Arnold-Mas&AM)  jamijtonian(1), and then compared such results with those
tori. The random case breaks all stability islands for anyyptained with the Kepler mapsee Fig. 2 Our intention
nonzero value of the field amplitude and eventually many \as to check whether the found ionization crossings, illus-
trajectories escape. trated in Fig. 1, were an artifact of the Kepler map approxi-

The result is reversed for the IR under high field intensity,mations. We have considered the Hamiltonian with constant
i.e., in this case the ionization is more effective for the chafield amplitude and also with its sign randomly changing at
otic Kepler map with constant amplitude sequences than fothe perihelium. For both cases the Hamiltonian and Kepler
the corresponding map with random sequences; see Fig. fhap present similar island structures in phase space; also the
We checked that this occurs because in the random casalues of IR are comparable in each case, so that the order
there are no stability islands that prevent the decreasing adfiversion of the IR curves as function of the field intensity is
the quasienergyH,= wNn?) indefinitely. The decreasing of also present for the Hamiltonian equations. For the random
the quasienergy in the random case is connected to the detamiltonian we have checked that similar results are ob-
creasing of the radii =|x| of some electron trajectories. The tained even though the sign of the field changes more fre-
approximation of the electron to the nucleus is a kind ofquently along the electron trajectory, i.e., near the perihelium
classical localization in the random case, which is absent imnd also in other positions of its trajectory. Such results cor-
the usual Kepler map. In fact, as it is well known, even forroborate the use of above Kepler map approximation for ran-
high intensity fields the usual Kepler map preserves someom fields. We are thus justified in using Kepler maps in the
stability islands andE,= wNn? cannot decrease indefinitely. simulations[see(ii) at the begining of this work Notice,
However, the phase space is virtually homogeneous for thRowever, that the effects are more pronounced in the calcu-
random case, i.e., the trajectories are dense in phase spacktions based on the Kepler mafsee Fig. 2 One reason for

In the regime of the high field intensity we have found such quantitative difference is that the Kepler map with con-
that the system is strongly perturbed and each trajectorgtant sequence is in good agreement with the Hamiltonian,
evolves into one of two possible asymptotical limiéxcept, while for nonconstant sequences such agreement is not so
of course, the trajectories restricted to the preservelt thé  good; perhaps for continuous models the phase space island
limit r—oo (ionization or the limit r—0. If there are no structure breaks hardly by sequence perturbations in com-
stability islands, the two limits are possible; if there are is-parison to the respective discrete maps.
lands near the origin only the limit— is possible for the We have calculated the averad®) and(n?) (over ini-
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tial conditiong as functions of time for both the usual and +—+—- and ——+;
random Kepler maps. In the case of the usual Kepler map no

simple law was found for the time dependencéMf), even  peginning with “+* one uses the above rules in concatena-
for large values ofe; recall that for small values o the tion to get

Kepler map is nearly integrable. On the other haidf) for

the random Kepler map is diffusive for all values in the bttt -ttt —tt—--

range of amplitudes we have consider@é., 2x 10 %<e

sO.Z),<N2>(t)~D(?)t, and the dependence of the diffusion  In the Fibonacci case we have, in fact, got intermediate
constant with the amplitude of the field beiry(e)~ €°, values of the IR between the other two cases we have

with 8=2.14 fitting very well in such range of amplitudes. analyzed—see Fig. 1. Notice the inversion of the IR effec-

This strongly indicates that the random component is indeedveness with respect to the other two cases.
the main ingredient responsible for the ionization in the ran- 10 conclude we try to put our results in a more general

dom Kepler map for any nonzere value. We have also perspective, although based on just one physical system. We

found that, discarding the trajectories as soon as they arréave found that for small perturbation intensity the chaotic

ionized,(n?) decreases monotonically: sin(;ez> is propor- behavior fills a small part of phase space and the destabili-

) . ! .._zation is less effective than the random one. There is a cross-
tional to the radius of the electron orbit, we have a quantita- . o
. : X over and for large perturbation the random destabilization
tive evidence that, in the case of random Kepler map, th

- : - . . %ecomes less effective than the chaotic one. Intermediary
trajectories that do not ionize penetrate into the atom, L . .
; . . behavior is possible, as we have found by using an almost
r—0), while for the usual Kepler map this phenomenon is

forbidden due to the presence of stability islands in phasgerIOdIC driven case.
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